ML

数据预处理

Posted by Chen Quan on January 18, 2018

常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍;

  • 标准化(Standardization or Mean Removal and Variance Scaling)

变换后各维特征有0均值,单位方差。也叫z-score规范化(零均值规范化)。计算方式是将特征值减去均值,除以标准差。

sklearn.preprocessing.scale(X)

一般会把train和test集放在一起做标准化,或者在train集上做标准化后,用同样的标准化器去标准化test集,此时可以用scaler

scaler = sklearn.preprocessing.StandardScaler().fit(train)
scaler.transform(train)
scaler.transform(test)

实际应用中,需要做特征标准化的常见情景:SVM

  • 最小-最大规范化 最小-最大规范化对原始数据进行线性变换,变换到[0,1]区间(也可以是其他固定最小最大值的区间)
min_max_scaler = sklearn.preprocessing.MinMaxScaler()
min_max_scaler.fit_transform(X_train)
  • 规范化(Normalization) 规范化是将不同变化范围的值映射到相同的固定范围,常见的是[0,1],此时也称为归一化。《机器学习》周志华 将每个样本变换成unit norm。
    X = [[ 1, -1, 2],[ 2, 0, 0], [ 0, 1, -1]]
    sklearn.preprocessing.normalize(X, norm='l2')
    

    得到: array([[ 0.40, -0.40, 0.81], [ 1, 0, 0], [ 0, 0.70, -0.70]]) 可以发现对于每一个样本都有,0.4^2+0.4^2+0.81^2=1,这就是L2 norm,变换后每个样本的各维特征的平方和为1。类似地,L1 norm则是变换后每个样本的各维特征的绝对值和为1。还有max norm,则是将每个样本的各维特征除以该样本各维特征的最大值。 在度量样本之间相似性时,如果使用的是二次型kernel,需要做Normalization

  • 特征二值化(Binarization)

给定阈值,将特征转换为0/1

binarizer = sklearn.preprocessing.Binarizer(threshold=1.1)
binarizer.transform(X)
  • 标签二值化(Label binarization)
    lb = sklearn.preprocessing.LabelBinarizer()
    
  • 类别特征编码 有时候特征是类别型的,而一些算法的输入必须是数值型,此时需要对其编码。
    enc = preprocessing.OneHotEncoder()
    enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
    enc.transform([[0, 1, 3]]).toarray()  #array([[ 1., 0., 0., 1., 0., 0., 0., 0., 1.]])
    

    上面这个例子,第一维特征有两种值0和1,用两位去编码。第二维用三位,第三维用四位。

  • 标签编码(Label encoding)
    le = sklearn.preprocessing.LabelEncoder()  
    le.fit([1, 2, 2, 6]) 
    le.transform([1, 1, 2, 6])  #array([0, 0, 1, 2]) 
    #非数值型转化为数值型
    le.fit(["paris", "paris", "tokyo", "amsterdam"])
    le.transform(["tokyo", "tokyo", "paris"])  #array([2, 2, 1])
    
  • 特征中含异常值时 ```python

sklearn.preprocessing.robust_scale


- 生成多项式特征

这个其实涉及到特征工程了,多项式特征/交叉特征。
```python
poly = sklearn.preprocessing.PolynomialFeatures(2)
poly.fit_transform(X)

参考文献:

http://scikit-learn.org/stable/modules/preprocessing.html

《机器学习》 周志华

源地址:http://wepon.me/2015/08/09/data-preprocessing/